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Abstract. We present a numerical approach to the central two-point connection problem for
the confluent cases of the Heun class of differential equations. The crucial step is an ansatz for
the solutions of the equations in terms of a generalized power series (called Jaffé expansions).
It is shown that the resulting difference equations for the coefficients of these series are of
Poincaŕe–Perron type. A (formal) asymptotic investigation of the solutions of these difference
equations yields the exact eigenvalue condition.

1. Introduction

Boundary value problems for linear ordinary second-order differential equations with
singularitiesat the endpoints of the interval of consideration are important in many problems
of mathematical physics. Examples appear in quantum theory: the two Coulomb centres
problem, the Stark effect in hydrogen, the anharmonic oscillator; they also appear in the
Kerr and Teucholsky models in gravity theory etc. Since solutions of these problems are in
general not polynomials, as is the case in simpler models leading to differential equations of
hypergeometric type, a robust numerical procedure is needed to convert the computation of
eigensolutions and corresponding eigenvalues by analytical means to appropriate standard
problems of linear algebra. If the above-mentioned singularities are regular this procedure is
well known. Complications arise if one or both of these points are irregular. In particular this
is the case when a high precision of the result is required as is the case when exponentially
small effects are considered.

Here, we present an approach valid for the latter case at rather general suppositions
restricting practical applications to those equations which arise under confluence processes
of the singularities of Heun’s equation the Fuchsian differential equation with four (regular)
singularities.

Suppose that there is an interval on the real axis at both endpoints of which is located a
singularity of the underlying differential equation. If we look for parameters of the equation
for which it has a solution behaving in a specified asymptotic manner while approaching
the two singularities from inside the relevant interval simultaneously this means to solve a
central two-point connection problem (CTCP). In [6–8] one of the authors has outlined a
procedure for solving CTCP of the confluent cases of Heun’s differential equation that was
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put into the context of boundary-eigenvalue problems of ordinary second-order differential
equations [9].

The Heun class of differential equation arises from Heun’s equation by means of
confluence processes as already mentioned above (see [13, 12]) and comprises the Heun
equation and four confluent cases. Recently, it has been studied intensively in [13].

The proposed procedure to deal with the CTCP consists of three steps.
(i) In a first step the equation is transformed by means of a gauge transformation of

the dependent variable and a Möbius transformation of the independent variable to an
appropriate form (Jaffé form).

(ii) In a second step the solution of the transformed equation is expanded in power
series (Jaff́e expansions); the coefficients of the Jaffé expansions are solutions of difference
equations of Poincaré–Perron type.

(iii) In a third step further study of the asymptotic behaviour of the coefficients is
undertaken resulting in the exact conditions for the eigenvalues.

Moreover, it is shown how to convert the problem into finite systems of linear equations
by truncating the infinite procedure so that well known numerical methods can be applied
in order to solve the connection problem. The error occurring by this truncation process
decreases exponentially with increasing numbers of linear equations taken into account.
This may be seen by considering the Birkhoff sets of the difference equations. The
numerical practicability of the method has been checked by applying it to various physical
systems as for example the quartic oscillator or a non-reflecting quantum potential (see e.g.
[11, 2, 3, 10]).

In section 2 we briefly expose the formulation of the CTCP for the confluent cases of
Heun’s differential equation. Section 3 outlines the treatment of the difference equations on
the basis of its Birkhoff sets. In section 4 we give the main result of this paper in the form
of the eigenvalue condition for the connection problems in each of the confluent cases of
Heun’s equation.

2. The connection problems

2.1. The differential equations

The confluent cases of Heun’s differential equation with the appropriate choice of scaling
of the independent variable and appropriate positioning of their singularities are as follows.

The single confluent case

d2y

dz2
+
[
−p + c

z
+ d

z+ 1

]
dy

dz
+
[
apz+ λ
z(z+ 1)

]
y = 0 (1)

the biconfluent case

d2y

dz2
+
[
−p(z+ 1)+ c

z

]
dy

dz
+
[
−pa + λ

z

]
y = 0 (2)

the triconfluent case

d2y

dz2
+ [−p(z2− 1)

] dy

dz
+ [−paz+ λ] y = 0 (3)

and the double confluent case:

d2y

dz2
+
[
c

z
− p(z

2− 1)

z2

]
dy

dz
+
[−paz+ λ

z2

]
y = 0. (4)
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In all of the above-written equations it is supposed that all the parameters are real and
moreover the parametersp andc satisfy

p > 0 c > 1.

Confusions should not occur from using the same notations for the parameters in different
equations here and below.

For each of the above-mentioned equations the solution of the CTCP is stated as follows.
Consider the positive real axis. While approaching the pointsz = 0 andz = ∞ from inside
the interval [0,∞[ there are two different asymptotic behaviours (called dominant and
recessive) of the solutions of each of equations (1)–(4). How to find the parametersλ

for which these differential equations have solutions that behave like the recessive solution
while simultaneouslyapproaching both pointsz = 0 andz = ∞ along the real axis. In
fact, these values are the eigenvalues of the corresponding eigenvalue problem.

In the triconfluent case the pointz = 0 is an ordinary point of the differential equation.
It would be more natural to extend the interval on which the connection problem is treated
from [0,+∞[ to ] −∞,+∞[. This can be done by applying the procedure given below
twice: once for the interval [0,∞[ and once for the interval ]−∞, 0]. In the latter case
it is needed to replacez by −z andp by −p. If we treat the connection problem on the
whole real axis we speak of thenatural CTCP for the triconfluent caseof Heun’s differential
equation.

2.2. Linear transformations

First we carry out the linear transformations of the dependent variable of each of the
equations (1)–(4) according to

y = (z+ 1)−aw. (5)

In all cases we obtain from the original equation in the form (cf (1)–(4))

d2y(z)

dz2
+ P(z)dy(z)

dz
+Q(z)y(z) = 0 (6)

the following differential equation

d2w(z)

dz2
+
(
P(z)− 2a

z+ 1

)
dw(z)

dz
+
(
Q(z)− aP (z)

z+ 1
+ a(a + 1)

(z+ 1)2

)
w(z) = 0. (7)

The crucial difference between these two equations is that the multiplier in front ofw(z) in
(7) can be estimated as

Q̃(z) = Q(z)− aP (z)
z+ 1

+ a(a + 1)

(z+ 1)2
= O(z−2) asz→∞.

As a result of this fact first the pointz = 1 becomes a reducible singularity (see [12]) in
the case of equations (2)–(4) and, secondly, there exists a solution of equation (7) which
has a finite limit when approaching the point at infinity along the positive real axis.

In the following we apply a M̈obius transformation to the dependent variable of each
confluent case of equation (7) according to

x = z− z1

z+ 1
(8)

where the value ofz1 is zero in the single, bi-, and triconfluent case and is unity in the
double confluent case.
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In the following we give the results of the M̈obius transformation for each confluent
case.

Single confluent case

x(1− x)2 d2w

dx2
[−px + (c + {d − 2(a + 1)}x)(1− x)] dw

dx
+[λ− ac + {a(a + 1)− ad}x]w = 0 (9)

biconfluent case

x(1− x)3 d2w

dx2
+ [−px + (1− x)2{c − 2(a + 1)x}] dw

dx
+[λ+ a(a + 1)(1− x){x − ca}]w = 0 (10)

triconfluent case

(1− x)4 d2w

dx2
+ [−2px + p − 2(a + 1)(1− x)3]

dw

dx
+[λ− ap + a(a + 1)(1− x)2]w = 0 (11)

and double confluent case

(1− x2)2
d2w

dx2
+ [−8px + 2(1− x2){c − (a + 1)(1+ x)}] dw

dx
+[4λ+ {a(a + 1)(1+ x)− 2ac}(1+ x)− 4pa]w = 0. (12)

Transformations (5), (8) taken together we callJaffé transformations. It was Jaff́e [5] who
recognized its significance for the CTCP while calculating the spectrum of the ionized
hydrogen molecule. Jaffé transformations can be easily extended to equations with more
singularities as in our case, here. The resulting equations (9)–(12) are equations inJaffé
(Jaffé–Lay) form. This form is characterized by the following conditions.

(a) At zero there is either an ordinary point or a regular singularity of the equation.
(b) At infinity there is always a regular singularity of the equation (possibly reducible).
(c) Not more than two singularities lie within the unit circle|x| 6 1.
(d) If there is one irregular singularity under consideration it lies atx = 1; if there are

two they lie atx = 1 and atx = −1.
(e) If there is a regular singularity under consideration it lies atx = 0.
Each of the confluent cases (9)–(12) admit an ansatz of the form

w(x) =
n=∞∑
n=0

gnx
n. (13)

The coefficientsgn obey (irregular) difference equations of Poincaré–Perron type. This
results from conditions (a) and (d) of the Jaffé–Lay form. The question arises as to what
the conditions are on the solutions of the difference equation in order for the function (13) to
be the eigensolution. Rigorously, the behaviour of the coefficientsgn can be reconstructed
from the formula inverse to (13)

gn = 1

2π i

∫
�

x−n−1w(x)dx. (14)

for an appropriate contour� (see [1]).
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3. Difference equations and Birkhoff sets

In the following we list these difference equations for each confluent case.
Single confluent case:

g−1 = 0

g0 arbitrary

cg1+ (λ− ac)g0 = 0(
1+ α1

n
+ β1

n2

)
gn+1+

(
−2+ α0

n
+ β0

n2

)
gn +

(
1+ α−1

n
+ β−1

n2

)
gn−1 = 0 n > 1

(15)

α1 := 1+ c β1 := c
α0 := −p + d − c − 2a β0 := λ− ac
α−1 := 2a − d − 1 β−1 := a(a + 1)− d(a − 1)− 2a.

Biconfluent case:

g−2 = g−1 = 0

g0 arbitrary

cg1+ (λ− ca)g0 = 0

2(1+ c)g2+ (λ− ca − p − 2(1+ a + c))g1+ (a(a + 1)+ ca)g0 = 0(
1+ α1

n
+ β1

n2

)
gn+1+

(
−3+ α0

n
+ β0

n2

)
gn +

(
3+ α−1

n
+ β−1

n2

)
gn−1

+
(
−1+ α−2

n
+ β−2

n2

)
gn−2 = 0 n > 2 (16)

α1 := 1+ c β1 := c
α0 := −p − 2c − 2a + 1 β0 := λ− ac
α−1 := c + 4a − 5 β−1 := a(a + 1)+ c(a − 1)− 4a + 2

α−2 := −2a + 3 β−2 := −a(a + 1)+ 4a − 2.

Triconfluent case:

g−1 = g−2 = 0

g0, g1 arbitrary

2g2+ (p − 2(a + 1))g1+ ((λ− pa)+ a(a + 1))g0 = 0

6g3+ (−8+ 2p − 4(a + 1))g2+ (−2p + 6(a + 1)

+(λ− pa)+ a(a + 1))g1− 2a(a + 1)g0 = 0(
1+ α2

n
+ β2

n2

)
gn+2+

(
−4+ α1

n
+ β1

n2

)
gn+1+

(
6+ α0

n
+ β0

n2

)
gn

+
(
−4+ α−1

n
+ β−1

n2

)
gn−1+

(
1+ α−2

n
+ β−2

n2

)
gn−2 = 0 n > 2

(17)

α2 := 3 β2 := 2

α1 := p − 4− 2(a + 1) β1 := p − 2(a + 1)

α0 := −2p + 6a β0 := λ− pa + a(a + 1)
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α−1 := −6(a + 1)+ 12 β−1 := 2(a + 1)(3− a)− 8

α−2 := 2a − 3 β−2 := (a + 1)(a − 4)+ 6.

Double confluent case:

g−1 = g−2 = 0

g0, g1 arbitrary

2g2+ 2(c − a − 1)g1+ (4(λ− pa)+ a(a + 1)− 2ca)g0 = 0

6g3+ 4(c − a − 1)g2+ {−8p − 2(a + 1)+ 4(λ− pa)+ a(a + 1)− 2ca}g1

+2(a(a + 1)− ca)g0 = 0(
1+ α2

n
+ β2

n2

)
gn+2+

(
α1

n
+ β1

n2

)
gn+1+

(
−2+ α0

n
+ β0

n2

)
gn

+
(
α−1

n
+ β−1

n2

)
gn−1+

(
1+ α−2

n
+ β−2

n2

)
gn−2 = 0 n > 2 (18)

α2 := 3 β2 := 2

α1 := 2(c − a − 1) β1 := 2(c − a − 1)

α0 := −8p − 2a β0 := 4(λ− pa)+ a(a + 1)− 2ca

α−1 := −2(c − a − 1) β−1 := −2(a − 1)(c − a − 1)

α−2 := 2a − 3 β−2 := (a − 1)(a − 2).

For each of these equations there exist formal solutions the number of which coincides
with the order of the equation. They represent linear independent particular solutions of the
corresponding difference equation asymptotically forn → ∞ [4] and are called Birkhoff
solutions [18]. The totality of the Birkhoff solutions of a difference equation is called a
Birkhoff set [18]. In the following we write the Birkhoff setssm for each of equations (15)–
(18).

Single confluent case:

sm(n) = exp
(
γmn

1
2

)
nrm

[
1+ Cm1

n
1
2

+ Cm2

n
2
2

+ · · ·
]

m = 1, 2. (19)

Biconfluent case:

sm(n) = exp(γm1n
2
3 + γm2n

1
3 )nrm

[
1+ Cm1

n
1
3

+ Cm2

n
2
3

+ · · ·
]

m = 1, 2, 3. (20)

Triconfluent case:

sm(n) = exp(γm1n
3
4 + γm2n

1
2 + γm3n

1
4 )nrm

[
1+ Cm1

n
1
4

+ Cm2

n
2
4

+ · · ·
]

m = 1, 2, 3, 4.

(21)

Double confluent case:

sm(n) = %nm exp(γmn
1
2 )nrm

[
1+ Cm1

n
1
2

+ Cm2

n
2
2

+ · · ·
]

m = 1, 2, 3, 4. (22)

The factors in front of the brackets on the right-hand sides of (19)–(22) are called the
asymptotic factors of the Birkhoff sets. In the following we give the coefficients for the
asymptotic factors of the Birkhoff sets (19)–(22).
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Single confluent case:

γ1 = 2p1/2

γ2 = −γ1

r1 = r2 = a − 1− c + d
2
=: r.

(23)

Biconfluent case:

γm1 = 3

2
exp

(
2π im

3

)
p1/3

γm2 = −3

2
exp

(
4π im

3

)
p2/3

r1 = r2 = r3 = c − 2a + 4

3
=: r.

(24)

Triconfluent case:

γm1 = 4

3
exp

(
2π im

4

)
p1/4

γm2 = −1

2
exp

(
4π im

4

)
p1/2

γm3 = −19

24
exp

(
6π im

4

)
p3/4

r1 = r2 = r3 = r4 = a − 3

2
=: r.

(25)

Double confluent case:
%m = 1 m = 1, 2

%m = −1 m = 3, 4

γm1 = exp(π im)(8p)1/2 m = 1, 2, 3, 4

r1 = r2 = −1+ a − c
2

r3 = r4 = −2− c
2
.

(26)

As one can see from (23)–(26) the asymptotic factors of the Birkhoff sets depend only
on the parametersp, a, c, d of the differential equations (1)–(4) and do not depend upon
the accessory parameterλ.

The general solutions of the difference equations (15)–(18) can be presented
asymptotically forn→∞ as

gn ∼
j∑
i=1

Lisi(n). (27)

The upper limit of the sum in (27) isj = 2 in the single confluent case,j = 3 in the
biconfluent case, andj = 4 in the tri- and double confluent cases. The coefficientsLi
depend on the parameters of the differential equations (1)–(4) and on the initial data for the
solutions but not on the index variable.

The crucial point now is the fact that we can distinguish two characteristic behaviours
of the solutions of the difference equations (15)–(18) forn → ∞. According to
the Birkhoff sets (19)–(22), and (23)–(26) we obtain—under rather weak conditions—
exclusively exponentially increasing and exponentially decreasing solutions. The increasing
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solutions we calldominant and the decreasing ones we callrecessive. It is important for
the following to distinguish the dominant solution growing the fastest. We call itmaximum
solution. The CTCP for the confluent cases of Heun’s differential equation is solved if
we can find the parameters of the differential equation for which the coefficient(s)Limax of
the maximum solutions of the difference equations (15)–(18) in (27) vanish. This will be
expanded in the next section.

In the following we suppose that the Birkhoff set (19) for the single confluent case
consists of one exponentially increasing and one exponentially decreasing asymptotic
solution. In the biconfluent case we suppose that the Birkhoff set (20) includes one
exponentially increasing and two exponentially decreasing solutions. In the triconfluent
case we suppose that the Birkhoff set (21) includes one exponentially decreasing and three
exponentially increasing solutions. In the double confluent case we suppose that the Birkhoff
set (22) includes two exponentially increasing and two exponentially decreasing solutions.

4. The eigenvalue conditions

Our procedure of dealing with the CTCP for the confluent cases of Heun’s differential
equation results in irregular difference equations of Poincaré–Perron type, the order of
which is the sum of thes-ranks of the irregular singularities in the underlying differential
equation.

As we have seen in the preceding section there are specific fundamental systems of
the difference equations which are characterized by the index-asymptotic behaviour for
n → ∞. These specific systems of particular solutions may be used to formulate the
eigenvalue condition.

4.1. The single, bi- and triconfluent cases

As one can see from the coefficients of the leading terms in the Birkhoff sets, there is in the
single, bi-, and triconfluent cases one particular solution of the difference equations that is
the maximum solution (as defined above) and will be denoted bys1 in (19)–(22). We shall
call the other solutions recessive. The eigenvalue conditions can be stated as follows. In
all the above-mentioned confluent cases of Heun’s differential equation the CTCP is solved
when the maximum solution of the resulting difference equation is vanishing:

L1(λ;p, a, . . .) = 0.

In the single confluent case one can prove this by infinite continued fraction methods. In the
biconfluent case it may be seen from Weierstrass’ convergence criterion and Abel’s limiting
value theorem. In the triconfluent case one has to apply asymptotic methods of analysis
since the series (13) are no longer convergent atx = 1 even in the case when we have an
eigensolution. This is carried out in more detail in [11].

4.2. The double confluent case

The difference equation here is of fourth order. However, because of the specific character
of the Jaff́e transformation we have two maximum solutions denoted bys1 and s3 in (22)
and (26). Thus, the eigenvalue condition here is given by

L1(λ;p, a, c) = L3(λ;p, a, c) = 0. (28)
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Obviously, in this case we need a further parameter in order to meet these two conditions.
This is given by the initial parameterg1 in (18) which serves as an eigenvalue parameter if
we would like to keepg0 arbitrary for normalizing reasons.

4.2.1. A reduction process.The double confluent case is the only one in which we obtained
two eigenvalue conditions. It is possible to reduce these to only one on the numerical level
as below.

We consider equation (18) in the form

A
(0)
0 g0+ A(0)1 g1+ A(0)2 g2 = 0

A
(1)
−1g0+ A(1)0 g1+ A(1)1 g2+ A(1)2 g3 = 0

A
(n)

−2gn−2+ A(n)−1gn−1+ A(n)0 gn + A(n)1 gn+1+ A(n)2 gn+2 = 0 n > 2.

(29)

It can also be written in the form of a system of infinite many linear equations

A · g = 0. (30)

The exact eigenvalue condition for the characteristic values may be written in the form

detA = 0. (31)

The system (30) is truncated at a sufficiently large numberN of n so that we obtain a
system ofN + 1 linear equations

A(N) · g(N) = 0 (32)

with

A(N) =



g
(0)
0 g

(0)
1 g

(0)
2 0 0 0 0 . . .

g
(1)
−1 g

(1)
0 g

(1)
1 g

(1)
2 0 0 0 . . .

g
(2)
−2 g

(2)
−1 g

(2)
0 g

(2)
1 g

(2)
2 0 0 . . .

0 g
(3)
−2 g

(3)
−1 g

(3)
0 g

(3)
1 g

(3)
2 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 g
(N−2)
−2 g

(N−2)
−1 g

(N−2)
0 g

(N−2)
1 g

(N−2)
2 0 0

. . . 0 0 g
(N−1)
−2 g

(N−1)
−1 g

(N−1)
0 g

(N−1)
1 g

(N−1)
2 0

. . . 0 0 0 g
(N)

−2 g
(N)

−1 g
(N)

0 g
(N)

1 g
(N)

2


(33)

g(N) =



g0

g1

g2
...

gN−1

gN
gN+1

gN+2


. (34)

Since we have two exponentially increasing Birkhoff solutions in (22) truncation means
that we have to setgN+1 = 0 and gN+2 = 0 in the system (32)–(34). The number of
exponentially decreasing Birkhoff solutions in (22) is also two. With the initial conditions

g
(1)
N = 1 g

(1)
N−1 = 0

g
(2)
N = 0 g

(2)
N−1 = 1
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we obtain two linearly independent recessive solutions

g(1)n , g
(2)
n n = N,N − 1, . . .0,−1,−2

by means of numerically stable backward recursions. The general recessive solution of
(32)–(34) is then given by

gn = K1g
(1)
n +K2g

(2)
n

with two arbitrary constantsK1 andK2. The condition (31) is transformed by means of the
truncation and the backward recursion process into

det

(
g
(1)
−1 g

(2)
−1

g
(1)
−2 g

(2)
−2

)
= 0

so that we eventually have to solve a 2×2 determinant in order to calculate the characteristic
parameters of the CTCP of the double confluent case of Heun’s differential equation.

The eigenvalue condition of the double confluent case consists of two conditions (28).
This is a consequence of the fact that the two relevant singularities are located on the unit
circle thus two conditions have to be met one at each of the two endpoints of the relevant
interval atx = ±1. This situation is compensated for by the fact that the solutions are
expanded about an ordinary point of the differential equation and not about a (regular)
singularity as is done in the other confluent cases. Mathematically, this is expressed by
the initial equations of the difference equation (29) where one can see that it is recursively
solvable only wheng0 and g1 are chosen, thus there are two initial values. Fixingg0 by
normalizing reasons we see that we have one further eigenvalue parameter entering the
problem in addition to the parameters of the differential equation. It was the aim of our
numerical procedure outlined above to reduce the number of eigenvalue parameters from
two to one. This was achieved by the backward recursion procedure from which we get
the ratiog1/g0—playing the role of this second eigenvalue parameter of the CTCP—as a
result!

5. Applications in physical sciences

In the foregoing sections we have presented a new and exact method to solve linear ordinary
second-order differential equations with polynomial coefficients. Being obvious that it has
a large field of applications, it is clear that the usefulness of the method is strictly dependent
on how far it will be applicable to concrete problems and on whether it will allow us to
obtain new or more accurate results. Therefore, we have made several investigations in this
respect before publishing the method itself. The most important ones are [6–8, 16]. They
deal with the most difficult cases the tri- and the double confluent ones and show that it is
not only possible to calculate eigenvalues and eigensolutions but also to find new qualitative
phenomena.

An example we briefly present here is the effect of ‘avoided crossings’ in the eigenvalue
curves of the quartic oscillator. This is an exponentially small effect and—as far as we
know—has not been calculated before. It is a natural CTCP of the triconfluent case related
physically to the double-well potential. Besides the eigenvalue parameterE we have the
parametera describing the asymmetry of the two wells. In figure 1 we show a section
of the eigenvalue curves of the quartic oscillator. The figure presents the six lowest-lying
levelsEn, n = 0, 1, . . . ,5 in dependence on the asymmetrya of the two wells. The effect
of avoided crossings is clearly seen.

In figure 2 the eigensolutions for the three lowest-lying eigenvalues are shown. On
the left the potential is symmetric(a = 0) and on the right the potential is non-symmetric
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Figure 1. Effect of avoided crossings in the spectrum of the quantum quartic oscillator.
Presented are the six lowest-lying energy levels in dependence on the asymmetry parameter
a. The inset shows how the curveE0 andE1 come close to one another but do not cross.

(a = 1). The full lines are the exact eigensolutions while the dotted ones are the results
of a Ritz approximation on the basis of harmonic oscillators. For details the reader should
consult the cited publications.

A second physical example is a non-reflecting potential that can be modelled by the
double confluent case of Heun’s equation. Here, in contrast to the quartic oscillator, the
effect of avoided crossings is suppressed. There is one potential well on the negative real
axis and the other on the positive one with a tunnelling barrier between them. A separate
spectrum for each of the wells can be calculated. Besides the eigenvalue parameterλ we
once again have a parametera describing the asymmetry of the two wells. However, as we
could show, there is an intrinsic symmetry of the differential equation so that after a rescaling
λ, a→ λ̃, a′ the eigenvalue curves̃λ(a′) are symmetric with respect toa′ = 0. Among the
eigensolutions we found generalized polynomials which have not been discovered before,
since they are beyond the set of classical orthogonal polynomials. Moreover, in view of
asymptotics this example has led us to discover that although we have Stokes and anti-Stokes
lines there are solutions which do not show the Stokes phenomenon [10].

A final statement concerns the role of Heun’s differential equation and its confluent cases
in the theory of Hamiltonian systems. As shown [17] there is a relation between the Heun
class of equations (linear) and the class of the Painlevé equations (nonlinear): if a quantum
system is described by any differential equation of Heun’s class then the corresponding
classical system is described by one of the differential equations of Painlevé’s class. This
sheds new light onto the role of Heun’s equations and gives us the opportunity to use our
calculations to qualitative characteristic features of Painlevé’s transcendents.

6. Conclusions

The procedure given above is a general one in the sense that it is valid for ordinary second-
order differential equations with polynomial coefficients. The characteristic feature of our
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Figure 2. Exact (full curves) and approximated eigensolutions for the three lowest-lying energy
levels of the quartic oscillator. On the left-hand side there is no asymmetry thusa = 0 while
a = 1 on the right-hand side.

procedure is that it converts the differential equation into a difference equation of Poincaré–
Perron type. The underlying idea is that the relevant interval is transformed by means of a
Möbius transformation onto the real axis between zero and one (between−1 and+1 for the
double confluent case) in such a manner that no other singularity of the differential equation
than the relevant ones are within the unit circle. We are left with the above-mentioned
difference equations which are characterized with respect to the connection problem by
means of the asymptotic behaviour of their particular solutions. From these we obtain
the exact eigenvalue conditions for all of the confluent cases of Heun’s equation as the
vanishing of the maximum solution (the two maximum solutions in the double confluent
case). As a result, we can apply this method numerically by means of a truncation of
the difference equation to an algebraic system of equations from which we know that the
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error is exponentially small with respect to the number of equations of the resulting matrix.
Eventually, we should mention, that our method may be considered as an alternative to the
so-called infinite-determinant method established by Schmidtet al [14, 15]. Unfortunately,
there does not exist a numerical realization of the latter method, therefore quantitative results
are not available and thus cannot be compared with our own results.
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[16] Slavyanov S Yu and Veshev N A 1997 Structure of avoided crossings for eigenvalues related to equations

of Heun’s classJ. Phys. A: Math. Gen.30 673–87
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